Dot product, length, and distance

We previously defined the length of a vector in \mathbb{R}^{2} or \mathbb{R}^{3}. we can generalize this to any vector in \mathbb{R}^{n}.

Def: If $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is a vector in \mathbb{R}^{n}, the length of \vec{x} is

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}=\sqrt{\vec{x} \cdot \vec{x}} .
$$

A vector of length 1 is called a unit vector. If $\|\vec{x}\| \neq 0$, then $\frac{1}{\|\vec{x}\|} \vec{x}$ is a unit vector.

Just like with vectors in \mathbb{R}^{3}, we have the following properties:

- $\|\vec{x}\| \geq 0$, and $\|\vec{x}\|=0$ if and only if $\vec{x}=\overrightarrow{0}$
- $\|a \vec{x}\|=|a|\|\vec{x}\|$ for all scalars a.

All the same properties of dot product hold as well:

- $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$
- $\vec{x} \cdot(\vec{y}+\vec{z})=\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z}$
- $(a \vec{x}) \cdot \vec{y}=a(\vec{x} \cdot \vec{y})=\vec{x} \cdot(a \stackrel{\rightharpoonup}{y})$ for all scalars a.

Example: If $\|\vec{x}\|=5,\|\vec{y}\|=2$, and $x \cdot y=-1$, what is $\|\vec{x}+\vec{y}\| ?$

First we calculate $\|\vec{x}+\vec{y}\|^{2}$:

$$
\begin{aligned}
\|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y}) & =(\vec{x}+\vec{y}) \cdot \vec{x}+(\vec{x}+\vec{y}) \cdot \vec{y} \\
& =\vec{x} \cdot \vec{x}+\vec{y} \cdot \vec{x}+\vec{x} \cdot \vec{y}+\vec{y} \cdot \vec{y} \\
& =\|\vec{x}\|^{2}+2 \vec{x} \cdot \vec{y}+\|\vec{y}\|^{2} \\
& =5^{2}+2(-1)+2^{2}=27 .
\end{aligned}
$$

So $\|\vec{x}+\vec{y}\|=\sqrt{27}$

Recall that if \vec{u} and \vec{v} are vectors in \mathbb{R}^{3}, then $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$.
since $|\cos \theta| \leqslant 1$ for any angle, this gives

$$
|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| .
$$

This inequality holds move generally for vectors in \mathbb{R}^{n} :

Cauchy Inequality: If \vec{x}, \vec{y} are vectors in \mathbb{R}^{n}, then

$$
|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\| .
$$

Moreover $|\vec{x} \cdot \vec{y}|=\|\vec{x}\|\|\vec{y}\|$ if and only if one is a scalar multiple of the other.

We can combine the cauchy inequality with the equality from The above example to get:

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+2(\vec{x} \cdot \vec{y})+\|\vec{y}\|^{2} \leq\|\vec{x}\|^{2}+2\|\vec{x}\|\|\vec{y}\|+\|\vec{y}\|^{2}=(\|\vec{x}\|+\|\vec{y}\|)^{2}
$$

So $\|\vec{x}+\vec{y}\|^{2} \leq(\|\vec{x}\|+\|\vec{y}\|)^{2}$. Taking square roots gives us:

The triangle inequality: If \vec{x} and \vec{y} are vectors in \mathbb{R}^{n}, then

$$
\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|
$$

Geometrically, the length of one side of a triangle is shorter than the sum of the lengths of the other two sides.

We defined the distance between two vectors in \mathbb{R}^{3} to be the length of their difference. We have the same def in \mathbb{R}^{n} :

Def: If \vec{x} and \vec{y} are vectors in \mathbb{R}^{n}, then the distance $d(\vec{x}, \vec{y})$ between \vec{x} and \vec{y} is

$$
d(\vec{x}, \vec{y})=\|\vec{x}-\vec{y}\|
$$

All of the intuitive properties hold:

Properties of $d(\vec{x}, \vec{y})$: If $\vec{x}, \vec{y}, \vec{z}$ are vectors in \mathbb{R}^{n}, we have 1.) $d(\vec{x}, \vec{y}) \geq 0$.
2.) $d(\vec{x}, \vec{y})=0 \Longleftrightarrow \vec{x}=\vec{y}$.
3) $d(\vec{x}, \vec{y})=d(\vec{y}, \vec{x})$.
4.) $d(\vec{x}, \vec{z}) \leq d(\vec{x}, \vec{y})+d(\vec{y}, \vec{z})$.

Property 4.) is just the triangle inequality:

$$
d(\vec{x}, \vec{z})=\|\vec{x}-\vec{z}\|=\|(\vec{x}-\vec{y})+(\vec{y}-\vec{z})\| \leq\|\vec{x}-\vec{y}\|+\|\vec{y}-\vec{z}\|=d(\vec{x}, \vec{y})+d(\vec{y}, \vec{z})
$$

Orthogonal sets
We can also define orthogonality for vectors in \mathbb{R}^{n} using the dot product:

Def:
1.) If \vec{x} and \vec{y} are in \mathbb{R}^{n}, they are orthogonal if $\vec{x} \cdot \vec{y}=0$.
2.) More generally a set $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{h}\right\}$ of nonzero vectors is an orthogonal set if every pair is or thogonal i.e. $\vec{x}_{i} \cdot \vec{x}_{j}=0$ for every i and j.
3.) $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$ is orthonormal if it is orthogonal and each \vec{x}_{i} is a unit vector, i.e. has length 1 .

Ex: The standard basis is orthonormal.

Ex: If $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}$ is an or thogonal set of vectors, then

$$
\left\{\frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}, \frac{\vec{x}_{3}}{\left\|\vec{x}_{2}\right\|}, \ldots, \frac{\vec{x}_{k}}{\left\|\vec{x}_{k}\right\|}\right\}
$$

is orthonormal. This is called normalizing an orthogonal set.

Ex: If $\vec{V}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$, then $\vec{V}_{1} \cdot \vec{V}_{3}=0, \vec{V}_{1} \cdot \vec{V}_{3}=0, \vec{V}_{2} \cdot \vec{V}_{3}=0$, so $\left\{\vec{V}_{1}, \vec{v}_{2}, \vec{V}_{3}\right\}$ is orthogonal.
$\left\|\vec{v}_{1}\right\|=2, \quad\left\|\vec{v}_{2}\right\|=\sqrt{2},\left\|\vec{v}_{3}\right\|=\sqrt{2}$, so to normalize, we take
$\left\{\frac{1}{2} \vec{V}_{1}, \frac{1}{\sqrt{2}} \vec{V}_{2}, \frac{1}{\sqrt{2}} \vec{V}_{3}\right\}$, which is orthonormal.

If we know vectors are orthogonal, what can we say about the length of their sum? In \mathbb{R}^{2} :

$$
\|\vec{x}\|^{2}+\|\vec{y}\|^{2}=\|\vec{x}+\stackrel{\rightharpoonup}{y}\|^{2}
$$

for \vec{x} and \vec{y} orthogonal, by the Pythagorean Theorem.

This generalizes to an orthogonal set in \mathbb{R}^{n} :

Pythagoras' Theorem: If $\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\}$ is an orthogonal set in \mathbb{R}^{n}, then

$$
\left\|\vec{x}_{1}+\vec{x}_{2}+\ldots+\vec{x}_{k}\right\|^{2}=\left\|\vec{x}_{1}\right\|^{2}+\left\|\vec{x}_{2}\right\|^{2}+\ldots+\left\|\vec{x}_{k}\right\|^{2}
$$

Why?

$$
\begin{aligned}
\left\|\vec{x}_{1}+\vec{x}_{2}+\ldots+\vec{x}_{k}\right\|^{2} & =\left(\vec{x}_{1}+\vec{x}_{2}+\ldots+\vec{x}_{k}\right) \cdot\left(\vec{x}_{1}+\vec{x}_{2}+\ldots+\vec{x}_{k}\right) \\
& =\left(\vec{x}_{1} \cdot \vec{x}_{1}\right)+\left(\stackrel{\rightharpoonup}{x}_{2} \cdot \vec{x}_{2}\right)+\ldots+\left(\vec{x}_{k} \cdot \vec{x}_{k}\right)+\sum_{i \neq j}(\underbrace{\left(\stackrel{\rightharpoonup}{x}_{i} \cdot \stackrel{\rightharpoonup}{x}_{j}\right.}_{0}) \\
& =\left\|\vec{x}_{1}\right\|^{2}+\ldots+\left\|\vec{x}_{k}\right\|^{2} .
\end{aligned}
$$

Theorem: Every orthogonal set in \mathbb{R}^{n} is linearly independent.

Thus, if U is the span of an orthogonal set, then the orthogonal set forms a basis for U, called an orthogonal basis.

The nice thing about orthogonal bases is that if we want to write a vector as a linear combination of The basis vectors, there is an explicit formula for the coefficients:

Expansion Theorem: If $\left\{\vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ is an orthogonal basis for U, a subspace of \mathbb{R}^{n}, and \vec{V} is any vector in U,

Then

$$
\stackrel{\rightharpoonup}{v}=\left(\frac{\stackrel{\rightharpoonup}{v} \cdot \vec{x}_{1}}{\left\|\vec{x}_{1}\right\|^{2}}\right) \stackrel{\rightharpoonup}{x}_{1}+\ldots+\left(\frac{\stackrel{\rightharpoonup}{v} \cdot \vec{x}_{m}}{\left\|\vec{x}_{m}\right\|^{2}}\right) \stackrel{\rightharpoonup}{x}_{m}
$$

Notice that this looks like the sum of the projections of \vec{v} onto each \vec{x}_{i}.

This is called the Fourier expansion of \vec{v}, and the coefficients are the Fourier coefficients.

Ex:

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right]
$$

is an orthogonal basis for \mathbb{R}^{3} since

$$
\vec{x}_{1} \cdot \vec{x}_{2}=0, \quad \vec{x}_{1} \cdot \vec{x}_{3}=0 \text {, and } \vec{x}_{2} \cdot \vec{x}_{3}=0 .
$$

In order to write $\vec{V}=\left[\begin{array}{c}6 \\ 1 \\ -2\end{array}\right]$ as a linear comb. of $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$, we first find the Fourier coefficients:

$$
\begin{aligned}
& \frac{\vec{v} \cdot \vec{x}_{1}}{\left\|\vec{x}_{1}\right\|^{2}}=\frac{6}{6}=1 \\
& \frac{\vec{v} \cdot \vec{x}_{2}}{\left\|\vec{x}_{2}\right\|^{2}}=\frac{-11}{5} \\
& \frac{\vec{v} \cdot \vec{x}_{3}}{\left\|\vec{x}_{3}\right\|^{2}}=\frac{18}{30}=\frac{3}{5}
\end{aligned}
$$

so $\quad \vec{v}=\vec{x}_{1}-\frac{11}{5} \vec{x}_{2}+\frac{3}{5} \vec{x}_{3}$.
Practice Problems: 5.3: 1, 2, 3bc, 4, 5b,6

